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Abstract

A method is developed which uses numerical tracers to make accurate diagnoses
of entrainment and detrainment rates and of the properties of the entrained and detrained
air in numerically simulated clouds. The numerical advection scheme is modified to
make it nondispersive, as required by the use of the tracers. Tests of the new method are
made, and an appropriate definition of clouds is selected.

Distributions of mixing fractions in the model consistently show maximums at the
end points, for nearly undilute environmental air or nearly undilute cloud air, with a
uniform distribution between.

The cumulonimbus clouds simulated here entrain air that had been substantially
changed by the clouds, and detrained air that is not necessarily representative of the cloud
air at the same level.

* The Institute for Global Change Research and Education is jointly operated by the Universities Space
Research Association and the University of Alabama in Huntsville.
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I. Introduction

A vertical sounding within a convective cloud differs from a moist adiabat because the
environmental air is entrained into the cloud. This entrainment also causes an increase in the
mass of the cloud, which may at the same time decrease by detrainment to the environment. The
relationship to large-scale dynamics of entrainment and detrainment in convective clouds became
clear when Yanai e7 al. (1973) showed that the effect of clouds on the environment consists
largely of warming and drying by downward motion that compensates for the upward mass flux
in clouds, with additional contributions by the detrained water vapor and condensate.

One-dimensional steady-state cloud models are often used when the effect of convective
clouds on the large-scale environment is parameterized in numerical models or diagnosed from
large-scale budgets. Early work with these cloud models treated clouds as either steady-state
jets (Stommel, 1947, 1951) or bubbles (Scorer and Ludlam, 1953; Levine, 1959) or as starting
plumes (Turner, 1962). All of these models include an entrainment rate that is inversely
proportional to the cloud’s radius, and Simpson e7 al. (1965) concluded from both photographic
measurements and simulations of observed clouds that the radius is approximately constant with
height. However, when these models are used, the cloud radius must be specified.

Recently, the specified entrainment and detrainment rates in one-dimensional cloud
models have been replaced by specified rates of mixing of cloud air with environmental air, with
the buoyancy of the resulting mixed parcels being used to determine their subsequent paths. In
the model of Raymond and Blyth (1986, 1992), for example, entrainment and mixing is
conceived as a random, episodic process, and each parcel moves to its level of neutral buoyancy
after mixing. Emanuel (1991), accounting for the possible presence of condensate in neutrally
buoyant parcels, detrained the mixed air only at levels at which further mixing with the
environment will result in neutral buoyancy. Another type of buoyancy sorting model,
developed by Kain and Fritsch (1990), avoids tracing the paths of individual mixed parcels, and
instead entrains into a single updraft only those mixed parcels that are positively buoyant.

Although the concept of a buoyancy sorting model is supported by observations (Taylor
and Baker, 1991; Blyth and Raymond, 1988) and by two-dimensional numerical simulations
(Bretherton and Smolarkiewicz, 1989), the details of the model formulation need to be tested for
a variety of cloud types and for different environments.

Siebesma and Cuijpers (1995) computed entrainment and detrainment rates in a large-
eddy simulation of nonprecipitating shallow convective clouds, and found that the fractional
entrainment and detrainment rates used in present large-scale atmospheric models are one order
of magnitude too small. Using their larger rates in a one-column model, Siebesma and Holtslag
(1996) produced a more realistic simulation of heat and moisture fluxes due to small cumuli.
However, their method produces only bulk entrainment and detrainment rates, not a distribution
of mixing fractions, and does not distinguish between air entrained from the environment and air
exchanged between updraft and downdraft. In addition, it does not yield the properties of
entrained and detrained air.

Lin and Arakawa (1997b) made some inferences about entrainment rates in numerically
simulated cumulonimbus clouds by comparing vertical profiles of moist static energy in clouds
and averaged over the domain. This method provides entrainment rates which can be used in
one-dimensional cloud models because it requires the same assumption that is in the one-
dimensional cloud models, 7.c. that the entrained air has the same properties as the horizontal



average. If, however, the entrained air has a larger moist static energy than the horizontal
average, this method will produce an entrainment rate that is too small. Then, a comparison of
the computed entrainment rate and the actual mass flux profile will produce a detrainment rate
that is too small. This may be insignificant, because the net result of entrainment and
detrainment will still produce the correct mass flux in the one-dimensional cloud model. Perhaps
a more serious weakness in this method arises because moist static energy does not uniquely
characterize thermodynamic properties. If, for example, the entrained air has the same moist
static energy as the horizontal average, but is cooler and more moist, then the mixed parcel will
have more condensate. The method used in the present study independently yields the mass flux
entrainment rate, the mass flux detrainment rate, and the properties of the entrained and
detrained air.

Section 2 includes descriptions of the method of using passive numerical tracers and of
an improved advection algorithm that is required for this study. In Section 3, the method is
tested with different definitions of clouds in the numerical model, and the one that is most
appropriate for simulating cumulonimbus clouds with this method is selected.

2. Methods
o. Tracers

The fractional mass flux entrainment rate is normally defined in one-dimensional steady-
state cloud models as AM/(MAz), where M =pAw is the mass flux, A is the horizontal area

of the cloud, and w is vertical velocity. For a time-dependent cloud, we must include an
additional quantity which accounts for the lateral expansion of the cloud boundary. However,
the simplest way to measure entrainment in a simulated cloud is to use the mass continuity
equation, as it is described in Arakawa and Schubert (1974, pp. 675-676), and measure the
lateral inflow of mass.

The aim of this rescarch is to compute entrainment and detrainment rates that can be
used in one-dimensional cloud models. In these models, mass flux is specified at cloud base, and
changes above cloud base only by entrainment or detrainment. Therefore, in this study, air is
defined as being entrained when it first meets the definition of a cloud updraft or of a cloud
downdraft, whether this occurs due to mixing with existing cloud air, due to the arrival of falling
precipitation, or due to adiabatic cooling that forms a new cloud above the level of the existing
cloud base. Similarly, air is defined as being detrained when it first fails to comply with the
definition of a cloud updraft or of a cloud downdraft, regardless of the reason. We do not make
the distinction, explained by Taylor and Baker (1991), between lateral ejection of air from inside
a cloud and wake shedding, in which material that was previously rising in a convective cloud 1s
simply left behind or actually propelled downward with little lateral motion.

No attempt is made to distinguish between lateral entrainment and cloud-top
entrainment: instead we compute entrainment and detrainment rates and the properties of the
entrained and detrained air. As Siebesma and Cuijpers (1995) explain, entrainment at the top of
a rising parcel, when averaged over the lifetime of the cloud, is mathematically equivalent to
lateral entrainment.

Eight conservative tracers will be periodically initialized as follows.

T 0 in clouds ,
' pe, outside of clouds M



0 in  clouds

, 2= {p outside of clouds 2)
PO, in cloud updrafts

T3:{ 0 in cloud downdrafts or outside of clouds )
pz in cloud updrafts

T :{ 0 in cloud downdrafts or outside of clouds “)
P in cloud updrafts

TS:{O in cloud downdrafts or outside of clouds )
PO, in cloud downdrafts

T(‘:{ 0 in cloud updrafts or outside of clouds ©)
pz in cloud downdrafts

T :{ 0 in cloud updrafts or outside of clouds )
o in cloud downdrafts

TS—{O in cloud updrafts or outside of clouds ®)

where 0, is equivalent potential temperature. These definitions are designed for a numerical
model with height, z, as the vertical coordinate, and with constant horizontal and vertical grid
intervals, in which case density, p . is a measure of the mass in a grid box. They can be changed
for other types of grids; if the vertical coordinate used a constant pressure interval, for example,
p would be replaced by 1.

After a fixed interval, At the value of T,/p at a cloudy grid point is the fraction of the
air in that grid box which was entrained from the environment during the interval; 1 - T,/p is
the fraction of air that was outside of the cloud at the beginning of the interval. The distribution
of mixing fractions of mass is given by the values of T,/p throughout the model domain,
including only those grid points where 0 < T,/p < 1.

At cach grid level, at the end of each At the quantity TA , where A is the horizontal

area of the grid box, is added over all points in cloud updrafts. At the end of the simulation, this
sum is divided by the duration of the simulation to give the environmental mass added to the
cloud updraft per unit height and per unit time. This includes both inward horizontal mass flux
and horizontal expansion of the updraft. When this sum is divided by the time-averaged updraft
mass flux, we get the fractional entrainment rate of environmental air into the updraft,

The same calculation, using Ty in place of Ty, gives the fractional entrainment rate of

downdraft air into the updraft.
Similar calculations, using T, and Ts, produce the fractional entrainment rates of

environmental air and updraft air into the downdraft.
Adding the quantity TsA outside of the cloud updrafts, and proceeding as above, gives

the fractional detrainment rate for the updraft. In the same way, the fractional detrainment rate
for the downdraft uses the sum of Ty A outside of cloud downdrafts.

The 0, of environmental air entrained into the updraft was T;/T, at the start of the
interval, when the tracers were initialized, before the air was entrained. The quantity Tg/Tg is
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the 0, of downdraft air entrained into the updraft. Similar calculations are done for air
entrained into the downdraft.

Evaluating T;/Ts outside of updrafts and Tg/Tg outside of downdrafts gives the 6, of
detrained air.

Because 8, changes due to freezing and melting, and due to deposition and sublimation,
the tracers will accurately give the value for air entrained from the environment, but may be
slightly inaccurate for detrained air or for air transferred between updraft and downdraft. This
problem can be minimized by specifying the smallest interval Aty that gives accurate results.

The tracers T, and Ty enable us to assign entrainment and detrainment to the correct
levels. For example, an updraft parcel which is at a height z; at the end of an interval has risen
from the height T,/Ts. Therefore any entrained air that is present in the parcel was entrained
somewhere between z = T,/Ty and z= z;. Similarly, we know that if detrained updraft air
started the interval at z= T, /T;, it must have been detrained somewhere between z= T,;/Ts and
z= z,. Interpolation is necessary when z = T,;/Ts is not exactly at a model grid level.

To avoid numerical problems that would arise when very small amounts of entrained or
detrained air result in very small values of the tracers, all quantities are accumulated over time at
each grid level before the ratios are computed. For this reason, entrainment and detrainment
rates can be computed only as averages over space and time, not as instantaneous rates at a
point. ’

b. Advection and diffusion

If the entrainment process in numerically simulated clouds is to be used to learn about
the same process in real clouds, we must be confident that entrainment and mixing in the model
are simulations of real physical processes, and not due primarily to numerical diffusion.

In the RAMS model (Pielke ef al., 1992; Walko ef al., 1995), there are two independent
types of mixing, the parameterized subgrid-scale turbulence, and any diffusion that might be
present in the advection scheme. The subgrid-scale turbulence uses eddy diffusion coefficients
which are computed, following the original formulation of Smagorinsky (1963) and Lilly (1962),
as the product of the local fluid deformation rate and the square of a length scale which is
related to the grid cell dimensions. Because of this dependence on the square of the length
scale, the parameterized turbulent diffusion, as shown by Williamson (1978), decreases with a
decreasing grid size. We can therefore minimize the subgrid-scale turbulence by using a
sufficiently small grid interval. A more physical interpretation is given by Klaassen and Clark
(1985), who explain that if the mesh is fine enough to resolve the eddies containing the major
part of the flow’s kinetic energy, then the eddy mixing terms make only a small contribution to
the dynamics.

There are two advection schemes available in RAMS, forward (Tremback er al., 1987)
and leapfrog. The standard procedure is to apply a hybrid of the two, in which the leapfrog
scheme is used for velocity components and pressure, with all other prognostic variables using
the forward scheme. A third advection procedure (Stevens ef al., 1998), a flux-corrected
transport scheme based on the work of Zalesak (1979), was written for the RAMS model. This
scheme, unlike many other advection formulations, is monotonic, i.e. when the velocity is
constant, the finite difference scheme does not generate any new maxima or minima. This is
important for the present simulations, because if a passive tracer is initialized with a



discontinuity at the edge of a cloud, then a dispersive advection scheme will incorrectly generate
values of the tracer that appear to indicate entrainment in the interior of the cloud, or
detrainment outside of the cloud, away from the cloud edge.

Flux-corrected transport schemes use an accurate, but dispersive, high-order scheme in
conjunction with a monotonic, but diffusive, low-order scheme. The two schemes are combined
with an antidiffusive operator to produce a high-order monotonic scheme. We have tested the
advection scheme of Stevens ¢f a/. (1998) in the RAMS model and found that the diffusion
decreases with a decreasing wind speed and with an increasing ratio of wavelength to grid
interval. Diffusion can therefore be minimized by subtracting the vertically averaged wind in the
cloud layer from the initial wind at each level. This will decrease the wind speed without
changing the simulated circulation. A sufficiently small grid interval will also help to decrease
the numerical diffusion in the advection scheme. Nevertheless, the diffusion in this scheme may
be significant in some situations.

The forward advection scheme is applied to the moisture and thermodynamic variables
and to the passive scalars when the hybrid procedure is used in the RAMS model. In contrast to
the flux-corrected transport scheme, the forward scheme is dispersive but not diffusive. If the
dispersive property can be removed from this scheme, it would then have the advantage over the
flux-corrected transport scheme of being less diffusive.

Rood (1987, p. 83) describes a few varieties of filling procedures, in which negative
values of positive-definite quantities are set to zero, with values at other points adjusted in order
to maintain a constant average over the domain. Although these procedures are effective in
removing negative values, they do not entirely remove new maxima or minima that are
generated by the advection scheme. Therefore, we have implemented a procedure in which new
maxima or minima are removed after the RAMS forward scheme is applied. The idea is that
advection should not, by itself, increase a maximum or decrease a minimum. Separately for each
direction', if the new value of a prognostic variable at a point is larger than the maximum of the
old values at that point and at the two immediately surrounding points, then the new value is
reduced to the old maximum. The values at the two surrounding points are then increased, in
proportion to how close they already are to the maximum. A similar procedure is applied when
the new value is smaller than the minimum of the old values. Finally, the domain-average is
corrected by a multiplicative adjustment. This technique may be viewed as a generalization of
the one described by Rasch and Williamson (1990, p. 1076); it differs from the procedure of
Bermejo and Staniforth (1992) in the adjustment to the two surrounding points.

Fig. 1 shows the results of a comparison of preliminary tests of the advection schemes.
These one-dimensional simulations advect a passive tracer, with uAt/Ax =05, for 100 time
steps, as in Figs 1, 2, and 5 of Rood (1987). For the square wave, the forward-in-time scheme
produces non-physical values less than zero and greater than one. These are eliminated with the
flux-corrected transport scheme, but a significant diffusion is added. (As stated above, this
diffusion can be partly eliminated in simulations of clouds.) The new scheme comes close to
preserving the shape of the square wave without introducing any new maxima or minima. For
the triangular wave, although the new procedure eliminates the very small negative values, it is
not much of an improvement. It slightly reduces the maximum, because the new procedure

' The forward advection scheme in RAMS uses the splitting or Marchuk method (Mesinger and Arakawa, 1976),
in which the advected variable is updated after the advection is performed for each direction.



changes the maximum only when the RAMS forward advection scheme has increased it, not
when it has decreased it.

¢. model description

The compressible nonhydrostatic option of the RAMS model is used in this study. The
model is run in two dimensions, with a domain 500 km wide and 19 km in height, with grid
intervals 1000 m in the horizontal and 300 m in the vertical. A rigid lid is invoked at the model
top by constraining vertical velocity to be zero there. Lateral boundary conditions are
formulated as in Klemp and Wilhelmson (1978). Open lateral boundaries are possible in the
present simulations because there are no simulated clouds near the edges of the domain. Ifa
cloud were to be advected out of the domain, the tracers would not correctly diagnose the
entrainment and detrainment rates.

Surface heat and moisture fluxes and radiation are not included in the present
simulations.

The prognostic variables are ice-liquid water potential temperature (Tripoli and Cotton,
1981) and mixing ratios of rain, pristine ice crystals, snow, aggregates, graupel, hail, and total
water substance. Temperature, water vapor mixing ratio, and cloud water mixing ratio are
diagnosed (Tripoli and Cotton, 1982).

The initial sounding, shown in Fig. 2, was formulated in order to simulate deep
convection that is similar to what might be observed over a midlatitude continent in the summer.

The aim of the present study is to examine the entrainment and detrainment processes in
clouds that are produced by the initial sounding. We do not want to simulate clouds generated
by an environment that has been significantly changed by the convection. Therefore the initial
state is designed to quickly generate deep convection that lasts for only a limited period of time.
To accomplish this, convection is initiated with two 2-km-deep semi-infinite cold pools, each
with a maximum potential temperature deficit at the surface of -8 K, decreasing linearly to zero
at 2 km. The cold pools surround a 50-km-wide region of undisturbed air in the center of the
domain. Shortly after one hour, the cold pools converge, suddenly eliminating the supply of
conditionally unstable air to the convection, resulting in a simulation of the complete life cycle of
convection generated by the initial sounding.

The initial wind increases from -10 m s°! at the surface to S m s*! at 2.5 km, and is
constant with height above that. Consistent with the results of Thorpe et al. (1980), the much
stronger initial cloud generated by the eastward-moving cold pool completely dominates the
simulation. A constant is subtracted from the wind at each level in order to keep the clouds
approximately stationary near the center of the domain.

The same simulation is interpreted using three definitions of clouds. In definition 1,
cloud updrafts are defined by w > 0 and qc + ;> 0.0l g kg1, where q¢ and q; are the mixing

ratios of cloud water and pristine ice crystals, while cloud downdrafts are defined by w <0 and

total condensate > 0.01 g kgl In definition 2, the updrafts must only have total condensate >

0.01 g kg, while definition 3 is the same as definition 1 except that a cloud must have [w| > 0.5
-1

ms .

3. Results
a. distribution of mixing fractions



The distribution of mixing fractions using definition 3 is shown in Fig. 3. In order to
exclude grid points with only negligible degrees of mixing, the frequency distribution includes
only those points with 0.01 < T,/p <0.99. The distribution does not vary with height within

the cloud (not shown). Distributions with the same shape have been produced for other
simulations (not shown) of a variety of convective cloud types, using a range of grid intervals
from 2.5 m to 2000 m.

With the 1000 m horizontal grid of the present study, entrainment is almost entirely a
result of turbulent diffusion at the edges of clouds. However, simulations by Klaassen and Clark
(1985), Grabowski (1989), and Grabowski and Clark (1991, 1993) of small cumulus clouds with
a very fine resolution have revealed an additional entrainment process. This is an inviscid
process associated with the baroclinic production of vorticity due to horizontal buoyancy
gradients across the cloud-environment interface. The fact that the distribution of mixing
fractions does not vary with grid size suggests that no significant quantitative error is made in
simulating entrainment with a coarse grid, which substitutes parameterized subgrid-scale
turbulence for the inviscid baroclinic process.

Although the present results resemble the uniform distribution used by Raymond and
Blyth (1986, 1992) and Emanuel (1991) much more than they resemble the normal distribution
used by Kain and Fritsch (1990), the conceptual model used here, of air being entrained into an
existing cloud, is the same as that of Kain and Fritsch. Compared to a normal distribution of
mixing fractions, the distribution of Fig. 3 would result in a larger fraction of the entrained air
coming from nearly pure environmental air, and a larger fraction of the detrained air coming
from nearly undilute cloud air. Compared to a uniform distribution, the same would be true, but
to a much lesser extent. Whether this has a significant impact on the results of buoyancy sorting
models needs to be determined.

b. entrainment and detrainment for different definitions of clouds

Deep convection dissipates before three hours, but the simulations were run for 10 hin
order to be sure that the clouds would have time to dissipate by the end of each simulation. This
guarantees that the time-averaged time tendencies are zero, and that the entrainment and
detrainment rates can therefore be interpreted as vertical gradients of mass flux. (See Eqs. 3 and
4 of Arakawa and Schubert, 1974.) With the third definition of clouds, shorter simulations
would have been just as good.

To verify that the tracers give accurate results, the quantity AM/(MAz) was computed
at each grid level, for the updrafts and the downdrafts, using the diagnosed entrainment and
detrainment rates, and compared to the actual value (Figs. 4a and 4¢). In addition, the vertical
gradient of 8, was computed, for the updrafts and downdrafts, using the diagnosed entrainment
and detrainment rates and the diagnosed 8, in the entrained and detrained air, and compared to
the actual vertical gradient (Figs. 4b and 4d). As shown in Fig. 4, the diagnostic procedure
described in section 2a is sufficiently accurate to enable us to draw general conclusions about
entrainment and detrainment. Freezing and deposition may partially explain why 6, in the
updraft increases with height in the upper troposphere faster than is diagnosed by the tracers
(Fig. 4b). At the top of the cloud, where mass flux is small and therefore fractional entrainment
and detrainment rates are large, the results are generally not useful. The reconstruction of the
fractional change of downdraft mass flux with height (Fig. 4c) is more accurate for the smaller
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interval, Aty = 100 sec. In general, results are slightly more accurate using the 100 sec.
interval, but the results do not continue to improve as the interval is reduced towards one time
step.

The time- and space-averaged entrainment and detrainment rates for definition 1 are
shown in Fig. 5. Because, in the design of the tracers, no distinction is made between air below
or above clouds and air alongside of clouds, air feeding the cloud from below cloud base
appears as a large entrainment rate in a thin layer near cloud base, and detrainment at the
ultimate cloud top appears as a large detrainment rate in a thin layer near cloud top. Between
these two thin layers are found the lateral entrainment and detrainment rates, which are the more
interesting results.

Because the results are averaged over time and space, the net change in mass flux with
height is a relatively small difference between larger entrainment rates and detrainment rates.
This is consistent with the observations of real clouds by Barnes et al. (1996) who diagnosed net
entrainment and later net detrainment in the same layer, and by Perry and Hobbs (1996), who
inferred that cumulus clouds grow on the upshear side and decay on the downshear side. As we
will see, however, the magnitudes of the entrainment and detrainment rates depend on the
definition of clouds in the numerical model.

Through nearly the entire depth of the cloud, if we look at the net result of entrainment
and detrainment, we see that the updraft (Fig. 5a) is gaining air from the environment and losing
air to the downdraft. There appears to be an excessively large rate of exchange of air between
the updraft and the downdraft above 9 km, but, as shown in Fig. 6b, at these levels, the updraft,
the downdraft, and the air transferred between the two have almost identical values of 6. This
represents small-scale oscillations in a persistent but very small cirrus anvil, in an environment
with small horizontal gradients of 8, Nevertheless, the time-averaged updraft mass flux (Fig.
7) decreases with height above 10 km due to transfer of air to the downdraft, not to the
environment, 7.e. the updraft is losing its upward motion, not its pristine ice crystals.

This transfer of cloud mass flux above 10 km from updraft to downdraft using definition
| is also evident in Fig. 5b. Below about 9 km, where the downdraft exchanges a large amount
of mass flux with the environment, the downdraft is generally gaining mass flux from the updraft
and losing it to the environment.

In contrast to the assumptions that are made in designing 1D cloud models, entrained
and detrained air generally have similar values of 8, (Fig. 6). The updraft is entraining air from
an environment that it has modified, and is detraining air with a lower 8, than the average for
the updraft.

If, instead of defining the updraft by q¢ + q; > 0.01 g kg-1, it must only have total

condensate at least 0.01 g kg! (definition 2), then there is more updraft mass flux below 12 km
(Fig 7a). In addition, in the middle troposphere, there is a much larger exchange of air between
updraft and downdraft (Fig. 8a vs. Fig.5a) and the horizontally averaged 0, of the updraft is
significantly lower (Fig. 9a vs. Fig.6a). The extra updraft mass flux in the PBL using definition
2 (Fig. 7) is coming largely from the downdraft, not from the environment; it is cold air that is
rising behind the gust front. In the middle troposphere with definition 2, the updraft and the
downdraft have similar values of 8, (Fig. 9b). The most obvious change from definition 1 at
this height is that the downdraft is exchanging air mostly with the updraft, not with the
environment (Fig. 8b vs. Fig.Sb). This is due to a large amount of unsaturated rising air, with



11

low 6, with precipitation but without cloud water or pristine crystals, that is classified as
environment with definition 1, but is part of the updraft with definition 2.

As with definition 1, the updraft below 5 km using definition 2 is entraining and
detraining air with very similar 0, (Fig. 9a). In contrast to definition 1, however, the air
entrained from the environment to the updraft above 6 km with definition 2 has a 6, nearly the
same as that of the environment. This entrained air is forming the unsaturated parts of the
updraft. With all this unsaturated air included in the updraft, the updraft 0. is much lower, very
close to that of the downdraft (Fig. 9b).

Much of the cloud mass flux which was diagnosed in the upper troposphere using the
first two definitions should be classified as cirrus anvil, not as cumulonimbus cloud. By
requiring that a cloud must have [w[>0.5m s-1 (definition 3) this air can be eliminated from the
definition of a cloud. With this definition, there is less updraft mass flux above 7 km, and
between about 1.5 km and 4 km (Fig. 7). The decrease in downdraft mass flux extends through
the depth of the troposphere, due to weak, mostly unsaturated, downdrafts that exist during and
after the period when the cumulonimbus clouds are dissipating.

When clouds are defined with [w| > 0.5 m 571, the large rate of exchange of air between
the updraft and the downdraft above 9 km is eliminated (Fig. 10). With the updraft and the
downdraft both entraining air largely from the environment and detraining air mostly to the
environment, the third definition of clouds produces entrainment and detrainment rates that
resemble those in traditional conceptual models. This results, however, simply because an air
parcel must change its vertical velocity by +1 m s-! within the interval Aty in order to transfer
between updraft and downdraft. Consequently, for the larger interval, there is more exchange of
air between updraft and downdraft and less between updraft and environment.

Fig. 11 shows the average properties of the entrained and detrained air for the updrafts
using definition 3, combining air exchanged either with the environment or with the downdraft.
The results are qualitatively similar [or all three intervals. The low values of 8, near cloud base
are most likely due to air which is not rising to high levels in the updraft. Between 2 km and 4
km, 8, of entrained air is very close to halfway between 0, of the environment and of the
updraft. This is consistent with the modeling results of Alfonso ef al. (1998), who found that
their 1D simulations most closely resembled the observations when the cloud entrained air with
a water vapor mixing ratio of an equal mixture of cloud and environmental air. Just above the
environmental 8, minimum, from 5 km to 7 km, the updraft entrains air with a 8, about 6 K
higher than the environment. Above 7 km, where the time-averaged updraft mass flux is
decreasing with height, the updraft 6, increases with height more slowly than that of the

environment. Entrained air at this level has a higher 8, than detrained air, even though the
environment has a lower 8, than the updraft. As the updraft loses mass flux with increasing
height in the upper part of the cloud, its 8, increases, remaining higher than that of the

environment, not only due to freezing (which occurs up to 10 km) and deposition, but also
because part of the updraft with relatively low 8, is being detrained. With only the high-0, air

remaining, the distribution of updraft 6, around the mean at each level is narrower above 7 km
(Fig. 12).

In their 2D simulations of maritime tropical convection, Lin and Arakawa (1997b) found
that the moist static energy in cloud updrafts at cloud base was about 2 kJ kg-! higher than the
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domain average at the surface. Fig. 11, in contrast, compares 8, in clouds to the undisturbed
initial sounding. In the present simulations, with the clouds initiated by semi-infinite cold pools,
the domain average of 0, near the surface would be determined mostly by the specified cold
pools. When clouds are initiated by small random temperature perturbations, as in Lin and
Arakawa (1997b), the domain average is similar to a grid-volume average in a coarse-grid
model. A comparison of 8, in the updraft and in the undisturbed environment in the present
simulations is more applicable to a situation where a 1D cloud model is initialized with an
observed sounding. We see that the updraft is not derived from undilute surface air.

Horizontal and temporal variations of 8, in the updrafts provide one explanation for the
low average 6, of the updraft compared to the 6, of the surface air in the initial undisturbed
sounding. At 40 minutes (Fig. 13a), when the cloud is growing, 6, at 5 km is as much as 350.5

K where the mass flux is strongest, but is as low as 340 K just 2 km to the east. The maximum
0, below cloud base at this time is 356 K. Forty minutes later (Fig. 13b), just after the cold
pools have converged, when the convection is much weaker, the sub-cloud air has a lower 8.,
and in the updraft at 5 km, 0, varies from 334 K to 342 K. Cloud properties diagnosed here
represent averages over space and time, over the complete life cycle of the clouds.

Lin and Arakawa (1997b) inferred that the entrainment rates just above cloud base in
their simulated updrafts were larger than they were further aloft. Fig. 14, showing the total
entrainment and detrainment rates, i.c. for air exchanged either with the environment or with the
downdraft, verify this. Fractional entrainment and detrainment rates are both very small in the
mid-troposphere, just above the environmental 8, minimum, and larger near cloud base and

cloud top.

Wang and Prinn (1998), in simulations of the transport of a chemical tracer in
cumulonimbus clouds, similarly noted that the domain-average mole fraction of the tracer was
smallest between 6 km and 9 km in height, and then inferred that the transport was primarily
vertical below 9 km and switched to horizontal above that level.

The entrainment and detrainment rates for the updrafts using definition 3 (Fig. 14) are
smaller when they are diagnosed using a larger interval, Aty because the larger interval
eliminates the small-scale, short-period, exchange of air between cloud and environment. If we
compare the average 8, of the entrained and detrained air (Fig. 11), we see that there is a larger
difference between the properties of the entrained air and of the detrained air for the larger
interval. This is consistent with the assumption that some air is rapidly exchanged between
updraft and environment without changing its 8, significantly. Michaud (1998) decided that
since this air would have little effect on the updraft properties, it can be ignored in designing a
1D cloud model. Using the longer interval may therefore come closer to diagnosing an
exchange of air between the cloud and the undisturbed environment. However, even with the
longer interval, the updraft is entraining air with a higher 6, than the undisturbed environment,
and detraining air that is generally different from the average updraft air.

Between 2 km and 4 km, where the entrainment rates are relatively large (Fig. 14), and
entrained air has a lower 8, than detrained air (Fig. 11), the 8, of the entrained air is nearly
identical for the three intervals, but air with a higher 8, is detrained for a larger interval. At this

level, apparently, the air that is quickly exchanged between updraft and environment has the
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same B, as the entrained air. Above 7 km, where mass flux is decreasing with height (Fig. 7),
both entrained and detrained air have different 6, for different intervals.

For the downdraft using definition 3, the average 8, for entrained and detrained air is
shown, in Fig. 15, only for a 100 sec. interval, because the results for the other intervals are
nearly indistinguishable. Above 4 km, the downdraft 9, is only a few degrees higher than that
of the environment. As the downdraft descends to just above the environmental 6, minimum, it
detrains air with a 6, that is slightly, but consistently, higher than the average for the downdraft.
At the same time, entrained air also causes a slow steady decrease in the average 0, of the
downdraft. From 4 km to 2 km, the situation reverses, as the entrained air has a higher 6, than

the detrained air.

Through a large part of the depth of the clouds, especially in the middle troposphere, the
entrainment and detrainment rates are much larger for the downdraft than they are for the
updraft (Fig. 10). Consistent with this, the downdraft 6, (Fig. 15) is closer to that of the

environment than is the updraft 8, (Fig. 11). This supports the results of Lin and Arakawa

(1997a), who found, in their numerical simulation of maritime tropical cumulonimbus clouds,
that no cloud air parcel descended more than several hundred meters.

4. Conclusions

A method has been developed which uses numerical tracers to make accurate diagnoses
of entrainment and detrainment rates and of the properties of the entrained and detrained air in
numerically simulated clouds. To obtain useful results, a nondispersive advection scheme is
required, and an appropriate definition of clouds must be selected.

Because including [w] > 0.5 m s~! in the definition of a cloud excludes the cirrus anvil,
and because defining an updraft by a minimum of cloud water and pristine crystals instead of by
a minimum of total condensate eliminates the unsaturated parts of the updraft, the simulations
described in Part 11 (Cohen, 1998) will use the third definition of clouds.

This definition was shown to be suitable for simulations of deep cumulonimbus clouds;
other cloud types may require different definitions.

Others (¢.g. Xu, 1995) have devised methods of distinguishing convective clouds from
stratiform clouds in numerical models. An additional consideration, disclosed here, is the
presence, at the edge of convective clouds, of unsaturated ascending air that contains
precipitation. This air, which is not classified as a convective cloud according to the definition
selected here, and is certainly not stratiform cloud, would significantly decrease the horizontally
averaged 0, of the updraft i it were categorized as convective cloud, as it would be in many

definitions currently in use.

The cumulonimbus clouds simulated here entrained air that had been substantially
changed by the clouds, and detrained air that was not necessarily representative of the cloud air
at the same level. Therefore, a given amount of entrainment may not change the properties of
the cloud by as much as it would if air from the undisturbed environment had been entrained,
and detrainment can have a significant effect on the thermodynamic properties of the cloud. In
the upper part of the cloud, for example, the updraft mass flux decreases with height because the
low-6, is being detrained, leaving only the relatively undilute core at high levels.
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Distributions of mixing fractions in the model consistently show maximums at the end
points, for nearly undilute environmental air or nearly undilute cloud air, with a uniform
distribution between. The large quantity of air that shows only a small degree of mixing
between cloud and environment appears as almost pure environmental air that joins the updraft
above cloud base, or as cloud air that is detrained with only a small amount of mixing.
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Figure captions

Fig.

Fig.

Fig.

1: Advection of rectangle (left) and triangle (right) using the RAMS forward-in-time

scheme (top), flux-corrected transport (middle), and the RAMS forward-in-time scheme
with fixer (bottom). The final state (dashed) is superimposed on the initial state (solid).

_2: Initial temperature and dewpoint sounding.
g. 3: Distribution of mixing fractions for definition 3 using intervals of 100 sec. (solid), 200

sec. (dashed), and 300 sec. (dotted) between re-initializing the tracers.

_ 4 Fractional change of mass flux with height for the updraft (a) and downdraft (c), and

vertical gradients of equivalent potential temperature in the updraft (b) and downdraft (d),
using definition 3. The heavy solid lines show the actual values in the simulation; the thin
lines show the values computed from the quantities diagnosed with the tracers, using
intervals of 100 sec. (solid), 200 sec. (dashed), and 300 sec. (dotted).

5. Fractional entrainment and detrainment rates using definition 1: (a) entrainment of
environmental air (solid) and downdraft air (dashed) into the updraft; detrainment of updraft
air to the environment (dot-dash) and to the downdraft (dotted); (b) entrainment of
environmental air (solid) and updraft air (dashed) into the downdraft; detrainment of
downdraft air to the environment (dot-dash) and to the updraft (dotted).

6. Equivalent potential temperature: (a) undisturbed initial sounding (solid), updraft
(dashed), and, using definition 1, entrained by the updraft from the environment (dot-dash)
and detrained by the updraft to the environment (dotted); (b) updraft (solid), downdraft
(dashed), and, using definition 1, transferred from updraft to downdraft (dotted) and
transferred from downdraft to updraft (dot-dash).

7- Horizontally averaged, time-averaged cloud mass flux using definition 1 (dotted),
definition 2 (dashed), and definition 3 (solid). Updraft mass fluxes are shown by the
positive curves; downdraft mass fluxes are shown by the negative curves. Downdraft mass
fluxes are identical for the first two definitions.

. 8: Same as Fig. 5, but using definition 2.

_9: Same as Fig. 6, but using definition 2.

. 10: Same as Fig. 5, but using definition 3.

. 11: Equivalent potential temperature: undisturbed initial sounding (solid), updraft (dashed),

and, for definition 3, entrained by the updraft (dot-dash) and detrained by the updraft

(dotted), using intervals of (a) 100 sec., (b) 200 sec., and (¢) 300 sec. between re-initializing
the tracers.

. 12: Probability density function of deviations of updraft 6, from its mean value for updrafts

at the same level, using definition 3, for all grid points below (solid) and above (dashed) 6.9
km.

. 13: Instantaneous fields at 40 min. (top) and 80 min. (bottom) of equivalent potential

temperature (solid contours, with 4 K interval) and updraft mass flux (shading). Updraft
mass fluxes are shown with intervals of 5 kg m2 s-! (top) and 2 kg m2 s°! (bottom).

14 Fractional entrainment rates (a) and fractional detrainment rates (b) for definition 3,

using intervals of 100 sec. (solid), 200 sec. (dashed), and 300 sec. (dotted) between re-
initializing the tracers.
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Fig. 15: Equivalent potential temperature: undisturbed initial sounding (solid), downdraft
(dashed), and, for definition 3, entrained by the downdraft (dot-dash) and detrained by the
downdraft (dotted), using an interval of 100 sec. between re-initializing the tracers.
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Fig. 1: Advection of rectangle (left) and triongle (right) using the RAMS forward—in—time
scheme (top), flux—corrected transport (middle), and the forward—in—time scheme with
fixer (bottom). The final state (dashed) is superimposed on the initial state (solid).
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Fig. 13: Instantaneous fields at 40 min. (top) and 80 min. (bottom) of equivalent
potential temperature (solid contours, with 4 K interval) and updraft mass flux
(using definition 3; shading). Updraft mass fluxes are shown with intervals of

5 kg/(msmss) (top) and 2 kg/(msmss) (bottom).
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